

Effects of the novel concept 'outdoor veal calf' on antimicrobial use, daily weight gain and mortality in Switzerland

J. Becker¹, V. Perreten², G. Schüpbach-Regula³, A. Steiner¹, M. Meylan¹

¹Clinic for Ruminants, ²Institute of Veterinary Bacteriology, ³Veterinary Public Health Institut; Vetsuisse Faculty, University of Bern, Bern, Switzerland

University of Bern, Switzerland – 02.07.2019

Where does veal come from?

D Universität Bern

Where does veal come from?

- Bovine calves slaughtered at ~5 months
- CH: ~30% of orally administered antibiotics to veal calves (ARCH-Vet, 2014; Proviande, 2015)
- Main reason for treatment is pneumonia
- Treatment incidence 21±15 resp. 12.5 days/calf-year (Lava et al., 2016a,b; Schnyder et al., 2019)

Background: Risk factor analysis Lava et al., 2016 a,b

- Purchase
- No clinical examination at arrival
- No quarantine
- No vaccination
- Groups >10 calves
- Weight differences >50kg within pen
- Shared air space

Intervention study design

UNIVERSITÄT BERN

19 intervention farms

'Outdoor veal calf' system

Observation period 1 year

Comparison of performance data

19 control farms

IP-Suisse label guidelines

Intervention farm example

D UNIVERSITÄ BERN

Intervention farm example

D UNIVERSITÄT BERN

Intervention farm example

Results

UNIVERSITÄT BERN

Parameter	Intervention group	Control group	p-value
Mean treatment incidence [days/calf-year]	5.90 ± 6.53	31.50 ± 27.4	<0.001
Treated animals [%]	15.10 ± 11.54	56.00 ± 24.33	<0.001
Mean number of treatments per treated animal	1.66 ± 0.59	2.43 ± 0.86	0.004
Mean mortality [%]	3.07 ± 2.34	6.29 ± 4.93	0.02
Mean daily weight gain [kg/day]	1.29 ± 0.17	1.35 ± 0.16	0.24

Susceptibility testing (of *E. coli* and Pasteurellaceae)

 Isolation of bacteria of the respiratory tract and indicator bacteria of the guts

Start: nasopharygeal and rectal swabbing Fattening period Fattening period Fattening period swabbing

- 7012 samples were taken (isolation of 3551*E. coli* and 2282 Pasteurellaceae)
- Minimal inhibitory concentration susceptibility testing is ongoing

Limitations

- No random assignment of participating farmers to groups
- Farmers in 'outdoor veal calf' group may be innovative
- For outdoor hutches, sufficient surface is needed

Conclusions

- Drastic reduction of treatment incidence and mortality
- No difference in daily weight gain
- Implementation according to principles of risk reduction
- In toto- or adapted use of concept (in case of local restraints)

Funding Institutions and Organizations

UNIVERSITÄT BERN

SWISS NATIONAL FOUNDATION

National Research Program 72

SWISS CONFEDERATION

Federal Institute of Agriculture

SWISS CONFEDERATION

Research Station Agroscope-Tänikon, Canton of Thurgau

IP SUISSE

Production and Sales Organization of Agricultural Goods

UNIVERSITY OF BERN

Vetsuisse Faculty, Clinic for Ruminants Bern